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28. Some Comments on the B.E.T. (Brunauer-Emmett-Teller) 
Adsorption Equation. 

By D .  C .  JONES. 

The B.E.T. (Brunauer-Emmett-Teller) adsorption equation is compared 
with Langmuir’s Cases IV and VI. An analysis of the equation leads to 
corrected conditions for the occurrence of adsorption curves of types I1 and 111. 
The locus of the points of inflection realisable in type I1 curves is investigated. 

GREAT interest has been aroused in the B.E.T. (Brunauer-Emmett-Teller) equation which was 
derived by application of the usual Langmuir kinetic method to multimolecular adsorption on a 
free surface. The theory was then extended in an interesting way to adsorption in capillaries 
where the diameter of the capillary provided a mechanical obstruction to the development o f  
more than a limited number of adsorbed layers, and also to capillary condensation. 

I t  is, however, often forgotten that Langmuir himself, in his well-known paper ( J .  Anzev. 
Chem. SOC., 1918, 40, 1361) visualised and formulated an equation to cover the case of adsorbed 
films more than one molecule thick, which he labelled Case VI, and i n  which he made the same 
assumption which later Brunauer, Emmett, and Teller (Brunauer, “ The Adsorption of Gases 
and Vapours,” Oxford Univ. Press, 1945) made in order to arrive a t  their equations for adsorption 
on a free surface. The development of the equations differs somewhat, but the same result is 
obtained although it  is expressed in different terms. In the present paper the two methods are 
briefly compared and a closer study is then made of the form of the theoretical adsorption curves. 

Langmuir (Zoc. c i t . )  showed that the equation obtained for Case VI is identical with that 
obtained for his Case IV, in which each elementary space is assumed to hold more than one 
adsorbed molecule and the rate of evaporation is dependent on the number of adsorbed molecules 
present per elementary space. In Case IV, v, represents the rate of evaporation from elementary 
spaces containing n molecules, a, is the reflection coefficient corresponding to spaces containing 
(n - 1)  molecules and Q, ( = a,/v,) is the corresponding relative life. The development is now as in 
Langmuir’s Case I : when equilibrium is reached the rate of evaporation from that fraction o f  
the surface containing elementary spaces with the same number of molecules is balanced by the 
rate of condensation in such spaces ; the equation obtained at equilibrium is 

where q is the total quantity of adsorbed gas expressed in g.-mols., N is Avogadro’s number, 
N o  is the number of elementary spaces per sq. cm., p is the collision number, and el, e2 . . . G, 

are the relative lives of the adsorbed molecules in the elementary spaces containing 1-92 
molecules. In Case VI, where multilayers are presumed to occur, v, is the rate of evaporation 
from the nth layer, and a, the reflection coefficient of molecules striking the (n - 1)th layer. If 
we “ assume each elementary space holds one molecule only, the problem is then identical 
with Case IV . . . . and a solution of the problem is given by Eq. 26.” Langmuir’s treatment 
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is now to take out a1 from the numerator of equation (26) and to divide both numerator and 
denominator by the numerator; then we have 

where a = bl - 20,, b = 6 2 ( 4 0 2  - 30, - 01), and C = 2a2(602a3 - 2C3Q4 + 0 1 6 2  - 0103  - 402*). 
NOW (quoting Langmuir), “ i f  al and a2 are different, but all subsequent values of o are equal to 
e2, then all coefficients in (29) above b are zero.” By making this assumption, which is essentially 
the same as Brunauer’s, it  is seen that 

Equation (30) factorises readily into 

. .  (31) 
1 1 =lP - N 

N,+i = (1 - o,p)[l + (61 - u2)p] 1 - 0np 1 + (Q1 - 0r)p 
-qS/S, is equivalent to the V/Vm of Brunauer ; it  is the total adsorption expressed as the number 
o f  monolayers. 

If  one uses the nomenclature of Brunauer and follows the Langmuir method, an expression 
comparable to (36) is obtained and, after making the Langmuir-Brunauer assumption and 
tii\.iding algebraically the numerator into the denominator, one obtains the expression (32) 

. . .  * (32) 
1 1 - --- Y - V - _  

I/, (1 - x)[l - ( x  - y)] 1 - x 1 - ( x  - y )  
Comparing equations (32) and (31) it is clear that y = o l p ,  and x or p i p o  = c q i .  Brunauer’s 
L = y / x  = Langmuir’s ol!a2 or the ratio of the relative lives of the first and subsequent layers. 
Substituting cx for y in equation (32) we have the Brunauer equation for adsorption on a free 
surface, i.e., 

CX (Brunauer, o p .  cit., p. 153). 
V 
- =  
vm (1 - x)[l - x(1 - c)] 

It should be stated here that Langmuir was of the opinion then that Case VI was operative 
\vhen (1) the vapour being nearly saturated, the rate of evaporation from the second layer of 
molecules is comparable with the rate of condensation, and (2) the forces acting between the 
first and second layers of adsorbed molecules are greater than those holding the first layer t o  the 
surface. Langmuir’s examination of equation (29) was limited to the statement that  “ a t  very 
low pressures r )  is proportional to ,u but at pressures close to saturation 3 begins to increase 
rapidly and becomes infinite when saturation is reached.” 

In general for all 
ratios of ( J ~ / U , ,  +iN/N, = 0 when p = 0, and qNIAro = 00 when [i = l/02 or l/(a2 - al). The 
gradient a t  any point is given by the expression 

I t  may be of interest to make some additional analysis of these equations. 

and as p approaches 0, this expression approaches cl, or the initial slope a t  the origin of the 
adsorption curves ( y N / N , ,  plotted against pa2[p!psat.!), is ol/a2, or on Brunauer’s nomenclature, 
is c ( I,’/ V m  plotted against pip , ) .  Further 

and a point of inflection occurs when 
t 

or, on Brunauer’s nomenclature, when 
(c - 1)1 - 1 

(c - 1) + (c - I ) *  
- P 

P o  
_ -  



128 Jones:  Some Comments on the B.E.T. 
(a) If 0 1  > 0 2  : 
(1)  o1 > 20, : the point of inflection occurs at positive values of p0, and qN/N, ,  the theoretical 

isotherms being concave to po2 from the origin to the inflection point. This case represents 
Brunauer’s type 11, when a sigmoid curve is found experimentally. 

In Fig. 1 are arranged typical 
isotherms calculated for varying ratios of o,/a,, and the locus of the inflection p i n t s  is marked as 
a broken line (see also Fig. 2). It extends from the origin when o l / ~ ,  = 2, reaches a maximum 
in respect to p for ol/O, = 9 and then, passing through a maximum in respect to qN/No,  returns 
to a value of r;N/No = 1 and = 0 when ~ ~ / a ,  = 00 (0, + 0). 

(2) ol = 20, : the point of inflection occurs at the origin. 

FIG. 2. FIG. 1. 

Point B.  This is the point on the isotherrr 

a 

3 

-5 

where the middle, flatter portion of the curve 
begins, and has been usedto give the value of Vm. ( Vm can also be calculated from the B.E.T. 
equation.) It is clearly the beginning of the “ inflection period,” where the previously rapid 

N da 
change of gradient is approaching the point where - 3 = 0. It may be a help in the fixing 

of point B to know the theoretical inflection point (01/02 or c being known). I t  would appear 
irom the curves in Fig. 1,  that the tendency would be to fix a value of V greater than the real 
value of V ,  if c is greater than 10. -4ctually if c = 9, po, = 0.25 and qNIN, = 1,  so that the 
inflection point itself gives the correct monolayer value. If c > 9, 3N/NO has values a t  the 
inflection point a little greater (up to 16%) than the correct monolayer value ; almost the correct 
value is given again as c gets very large. If c < 9, the inflection point values rapidly fall below 
the monolayer value for -qN/N,. Theoretically, therefore, and for adsorbents on a free surface, 
the locus of the inflection points might prove a useful guide in determining which point on the 
experimental curve gives the best approximation to V = V ,  ; it is clearly not in general “ the 
beginning of the flat portion of the curve.” (It  may be of value in this connection to  investigate, 
as above, the shape of the theoretical curves when n + 0 0 .  For certain values of n and c two 

No dF2 
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points of inflection would be found, the first being near the value of qN/N,  for n = 00 , and the 
above discussion might be of value in this case also in helping to fix the point where q N / N ,  = 1 .) 

It is seen from the curves that when aI/a2 has values close to but greater than 2, the point of 
inflection approaches the origin, e .g . ,  curve 5 where 01/a2 = 2.5, and it  is difficult to detect the 
sigmoid type in the experintental curve where, of course, the part  of the curve when q and y have 
negative values is not available as it is in the theovelical isotherms of Fig. 1 .  The explanation of 
this difficulty is that  when al/c2 approaches 0 0 ,  the initial gradient approaches and the 
gradient a t  the point of inflection approaches 1 ; as al/a2 decreases, so does the initial gradient 
(al/az), but the gradient at the point of inflection increases until the two gradients become 
identical and equal to 2 when al/a2 = 2 and the point of inflection is a t  the origin. 

The Type I1 curves of Brunauer are found then when al/az, or c,  exceeds 2 ;  the limiting 
conditions are (1) when a,/02 = 00 (a2 =I= 0) and (2) when al/az = 2. 

According to Brunauer's approximation that in the expression c = 2 . 2 . e(Ei - 
a b  
b l  a2 

a,b2 can be taken without much error as equal to anbl, c becomes e(E1 - EL)IRT. It is seen that 
the Type I1 curve changes over to the Type 111, not as usually stated when El = EL but when 
eEi'RT = 2eEL/R* or, if T = 300°, when E ,  = EL + 420 cals. approx. 

From equation (31) it is seen that 
in the limit in this case 3N/N0 = 1/(  1 - a2p). This is a hyperbola with asymptotes r;N,", = 0 
a n d p  = l/02.* For positive valuesof q N / N ,  the curve followsclosely curve 2 in Fig. 1 from 
infinity, Lvhen p = l/a2, and crosses the ordinate a t  r,N/N, = 1 ; its continuation for negative 
values of paz is shown in Fig. 1.  This curve represents the further adsorption, according to this 
model, on an initially complete monolayer. 

It will be noted in the theoretical curves of Fig. 1, as is evident from actual adsorption 
isotherms given in Brunauer's book (op. cit.) , that  for values of p in the range 0*7/0, ( = 0 - 7  PIP,} 
upwards, the isotherms would be difficult to detect separately in practice for values of c > 10. 
It should, be possible theoretically to determine V ,  for such cases, bv fitting an  experimental 
curve against this calculated curve for V j V ,  against p i p ,  where c is 0 0 .  The calculated curve 
(c = 0 0 )  would leave the experimental curve a t  some value of pip,, and where i t  crosses the  
ordinate would give the value of I/ which is equal to V,. 

Preliminary calculations show tha t  similar procedures could be used where the adsorption 
is not on a free surface but where the isotherm is represented by the Brunauer equation (op. cit., 
p. 154) where n = the number of adsorbed layers that could be fitted into the idealised capillary 
tube system of an adsorbent. 

Another way of making use of this coincidence of the curves a t  high values of p / p o  in order to 
obtain a value for V ,  may be illustrated by an  example ; the theoretical value of V /  V m  for c = 00 
at a value of p / p ,  of 0.9 is 10 ; the value of V / V ,  that  would be observed a t  the same value of p / p ,  
if  the experimental curve had a value of c = 10 would be 9-9 ; the value of 17, so calculated from 
a single adsorption point would thus be 176 low. The error involved in this calculation depends 
on the value of c. 

(b )  If 1 < .,/a2 < 2 : The curves retain their point of inflection, which however now occurs 
at negative values of r,N/N, and p; qN/N,  as before becomes 00 a t  the values of p = l/02 and 
l/(a2 - a*) ; e g . ,  if al = 1*5a2, the point of inflection is a t  -0*327/a2 and the curve passes to 
infinity a t  p = + ]/a2 and a t  -2/a,. As regards the realisable part of the adsorption curve this 
case belongs to the Brunauer Type 111. 

The case when has become 00 (a2 =I= 0) is interesting. 

(c) If  a1 = a2 : Equation (31) becomes 

This again is a hyperbola with asymptotes a t  qNIN, = - 1 and p = 1 /a2 (see curve 8). This 
represents a limit to the theoretical sigmoid curve of Type 11, the other limit being the hyperbola 
obtained when al/uZ = 0 0 .  These two hyperbolz, which represent the limiting cases for 
theoretical sigmoid adsorption curves on this model, have the same gradients throughout 

O2 and are convex to the abscissa, as an inspection of the second differential 

shows. Indeed they represent similar adsorption processes : one is the multilayer formation 
on a completed monolayer whose adsorptive properties are assumed to be equivalent to those 

* See also Gregg and Jacobs, Trans. Faraduy Soc., 1048, 44, 577. 

N drl - 
No dt* - ( 1  - 0,p)2J 

K 
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of the liquid at the same temperature (a2 = a3 . . . . . uL) and the other is the multilayer formation 
occurring on a surface whose adsorptive properties are equivalent to those of the liquid (ul = a,). 
As has already been pointed out, the realisable sigmoid adsorption isotherms have their limit at 
a1 = 202, when the inflection point has reached the origin. This case (c) also belongs to Type I11 
of Brunauer’s classification. 

It is interesting to compare these cases with the Langmuir Case I (so-called Langmuir 

. (az = 0 ) ,  which is, of course, also a hyperbola with adsorption equation), - q = -%!!.- 
asymptotes qN/No  = 1 and p = - l /al .  This curve is concave to the abscissa for positive 

N 
No 1 + alp 

. -  

. The initial slope (p = 0) is a1 and a monolaj-er is adsorbed 

only when p ( p )  = a ; at saturation, or Po),  the fraction of a monolayer adsorbed is deter- 
mined by the values of al and hat. and may be quite small for non-volatile liquids with small 
values of al. Since psat. is equal to l/a2, this monolayer fraction is determined by the ratio 
al/uL. If the adsorbing surface is of such a kind that a1 = aL then at saturation qN/No  = 1/2, 
as would be the case also for adsorption on the liquid surface itself [the adsorption process is 
assumed to be limited to a monolayer which is reached (theoretically) a t  p = 00 1. 

( d )  al < a2 or 0 < c < 1 ; e .g . ,  curve 10 when a1 = 0.10, : Dealing first with the realisable 
portion of the curve, we see that the adsorption is small until considerable values of puz are 
reached and that then a steep increase in qN/No  occurs as the curve approaches p = l/a2. 
Theoretically, after passing through the origin, all curves show a minimum at p = - p , , / d (  1 - c )  
and a point of inflection as the curve becomes asymptotic to qN/N,  = 0. Beyond the saturation 
value other, theoretical, portions of the curve occur, with, for example, a maximum appearing 
a t  p = + p 0 / d ( l  - c). The realisable portion of the isotherm, however, is again of Type 111, 
which therefore is found ranging from a1/a2 = 2 to al/a2 = a very small value, or when 
El = EL + 420 cals. (approx.) at room temperature, to E l  < EL, E ,  ZI= 0, the previous 
assumptions holding. 

The resemblance between Langmuir’s Case VI and the B.E.T. equation for adsorption on a 
free surface has been pointed out and it has been recalled that the same basic equation holds 
also for Langmuir’s Case IV. Brunauer and his co-workers have made an interesting extension 
of their theory to cover the case where the adsorption may be limited by the width of the 
capillary spaces in the adsorbents. The equation covering this case is derived by summing the 
infinite series in the numerator and denominator of equation (26) to a finite number of terms, the 
same assumptions being made as before. Both series are of well-known form and can readily be 
summed to n terms or to infinity. It is clear therefore, and perhaps worth recording, that  the 
same equation is thus obtained as in Langmuir’s Case IV where n is the number of molecules per 
elementary space. The assumption that the relative lives of the adsorbed molecules can be 
considered equal if n > 2 is, perhaps, less plausible here than in the former case. However, this 
general similarity may partly account for the ability of the Brunauer equation to fit experimental 
results when the adsorption is a monolayer or less a t  high values of p ipo ,  e g . ,  the adsorption of 
iodine on silica gel (Brunauer, op.  cit . ,  p. 165). It is intended to make a further analysis of this 
case later and attention is directed here only to some very general considerations concerning it. 

As already pointed out, when n = 00 and for values of c > 10 (say), the first layer is almost 
completed a t  fairly low values of PIPo and, therefore, the parts of the isotherm where p / p o  have 
high values are difficult to distinguish ; these parts of the isotherm are almost independent of c. 
This occurs also when n is finite ; the value of V j V ,  at saturation, now finite, is little affected by 
the value of c, if c > 10. This insensitiveness to the value of c at saturation is diminished by a 
greater value of n ;  e . g . ,  if n = 2, V / V ,  at saturation = (3/2)(20/21) for c = 10, (3/2)(200/201) for 
c = 100, and 3/2 for c = 00 ; if n = 6, the corresponding values are (7/2)(60/61), (7/2)(600/601), 
and 7/2. I n  general, for any values of n, V / V ,  = 0 when p / p 0  = 0, V / V ,  = n when p / p o  = 0 0 ,  

the initial gradient = c and when p / p o  = 1 ,  V / V ,  = [cq/(l + cq)][(q + 1)/2] ; this expression 
approaches (12 + 1)/2 as c approaches a . 

The author is grateful to Miss E. W. Birks for assistance with some of the calculations. 
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